A New Urban Index for Expressing Inner-City Patterns Based on MODIS LST and EVI Regulated DMSP/OLS NTL

نویسندگان

  • Yangxiaoyue Liu
  • Yaping Yang
  • Wenlong Jing
  • Ling Yao
  • Xiafang Yue
  • Xiaodan Zhao
چکیده

With the rapid pace of urban expansion, comprehensively understanding urban spatial patterns, built environments, green-spaces distributions, demographic distributions, and economic activities becomes more meaningful. Night Time Lights (NTL) images acquired through the Operational Linescan System of the US Defense Meteorological Satellite Program (DMSP/OLS NTL) have long been utilized to monitor urban areas and their expansion characteristics since this system detects variation in NTL emissions. However, the pixel saturation phenomenon leads to a serious limitation in mapping luminance variations in urban zones with nighttime illumination levels that approach or exceed the pixel saturation limits of OLS sensors. Consequently, we propose an NTL-based city index that utilizes the Moderate-resolution Imaging Spectroradiometer (MODIS) Land Surface Temperature (LST) and Enhanced Vegetation Index (EVI) images to regulate and compensate for desaturation on NTL images acquired from corresponding urban areas. The regulated results achieve good performance in differentiating central business districts (CBDs), airports, and urban green spaces. Consequently, these derived imageries could effectively convey the structural details of urban cores. In addition, compared with the Vegetation Adjusted NTL Urban Index (VANUI), LST-and-EVI-regulated-NTL-city index (LERNCI) reveals superior capability in delineating the spatial structures of selected metropolis areas across the world, especially in the large cities of developing countries. The currently available results indicate that LERNCI corresponds better to city spatial patterns. Moreover, LERNCI displays a remarkably better “goodness-of-fit” correspondence with both the Version 1 Nighttime Visible Infrared Imaging Radiometer Suite Day/Night Band Composite (NPP/VIIRS DNB) data and the WorldPop population-density data compared with the VANUI imageries. Thus, LERNCI can act as a helpful indicator for differentiating and classifying regional economic activities, population aggregations, and energy-consumption and city-expansion patterns. LERNCI can also serve as a valuable auxiliary reference for decision-making processes that concern subjects such as urban planning and easing the central functions of metropolis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regional Urban Extent Extraction Using Multi-Sensor Data and One-Class Classification

Stable night-time light data from the Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper presents a regional urban extent extraction method using a one-class classifier and combinations of DMSP/OLS stable night-time light (NTL) data, MODIS normalized difference vegetation index (NDVI) data, and land...

متن کامل

A Normalized Urban Areas Composite Index (NUACI) Based on Combination of DMSP-OLS and MODIS for Mapping Impervious Surface Area

Mapping Impervious Surface Area (ISA) at regional and global scales has attracted increasing interest. DMSP-OLS nighttime light (NTL) data have proven to be successful for mapping urban land in large areas. However, the well-documented issues of pixel blooming and saturation limit the ability of DMSP-OLS data to provide accurate urban information. In this paper, a multi-source composition index...

متن کامل

Regional urban area extraction using DMSP-OLS data and MODIS data

Stable night lights data from Defense Meteorological Satellite Program (DMSP) Operational Line-scan System (OLS) provide a unique proxy for anthropogenic development. This paper proposed two new methods of extracting regional urban extents using DMSP-OLS data, MODIS NDVI data and Land Surface Temperature (LST) data. MODIS NDVI data were used to reduce the over-glow effect, since urban areas gen...

متن کامل

Evaluating the Use of DMSP/OLS Nighttime Light Imagery in Predicting PM2.5 Concentrations in the Northeastern United States

Degraded air quality by PM2.5 can cause various health problems. Satellite observations provide abundant data for monitoring PM2.5 pollution. While satellite-derived products, such as aerosol optical depth (AOD) and normalized difference vegetation index (NDVI), have been widely used in estimating PM2.5 concentration, little research was focused on the use of remotely sensed nighttime light (NT...

متن کامل

The Integrated Use of DMSP-OLS Nighttime Light and MODIS Data for Monitoring Large-Scale Impervious Surface Dynamics: A Case Study in the Yangtze River Delta

The timely and reliable estimation of imperviousness is essential for the scientific understanding of human-Earth interactions. Due to the unique capacity of capturing artificial light luminosity and long-term data records, the Defense Meteorological Satellite Program (DMSP)’s Operational Line-scan System (OLS) nighttime light (NTL) imagery offers an appealing opportunity for continuously chara...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2017